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bstract

e describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied
ere include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric
aterials are of interest in telecommunication applications, where they are used in tuning and filtering equipment. Ionic and mixed conductors are

he subjects of a concerted effort in the search for new materials that can be incorporated into efficient, clean electrochemical devices of interest
n energy production and greenhouse gas reduction applications. Multi-layer perceptron ANNs are trained using the back-propagation algorithm

nd utilise data obtained from the literature to learn composition–property relationships between the inputs and outputs of the system. The trained
etworks use compositional information to predict the relative permittivity and oxygen diffusion properties of ceramic materials. The results show
hat ANNs are able to produce accurate predictions of the properties of these ceramic materials, which can be used to develop materials suitable
or use in telecommunication and energy production applications.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Accurate determination of the properties of a ceramic
aterial1 allows it to be matched to appropriate applications and

herefore, fast and reliable methods for predicting material prop-
rties would be extremely useful. Various modelling techniques
an be used to predict material properties from compositional
nd processing information and can provide fast and accurate
esults. In the conventional “Popperian” scientific method,2 a
heory is proposed and tested by experiment. Whilst such exper-
ments increase our confidence in the model, one experiment
an falsify the theory which can never have more than a provi-
ional status. Inductive “Baconian” methods,3 in contrast to the
opperian technique, begin with experiment and use statistical
nference to develop a model. In principle, such techniques make
o prior assumptions about an underlying theoretical model and
tilise statistical methods to induce data relationships.

∗ Corresponding author. Tel.: +44 20 7679 4560; fax: +44 20 7679 7463.
E-mail address: p.v.coveney@ucl.ac.uk (P.V. Coveney).
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Popperian modelling of the properties of ceramic materials
as yielded important results. Models of the diffusion of oxygen
hrough mixed ionic conductors4 have provided accurate predic-
ions of the diffusion coefficient; likewise, successful modelling
f the structure–performance relationship of solid oxide fuel cell
SOFC) electrodes has been performed.5 Prediction of the grain
oundary properties of dielectric ceramic materials has also been
erformed.6 In this paper, by contrast, we attempt to produce a
aconian model capable of predicting properties of a wide range
f ceramic materials. It would be extremely difficult to develop
uch a model using conventional (Popperian) techniques7 and,
herefore, we use the inductive approach known as an artificial
eural network (ANN).

ANNs are one of several “biologically inspired” computa-
ional methods which can be used to capture complex, non-linear
elationships between data.8 These techniques have been used
n many areas of chemistry7 and have provided accurate pre-

ictions in the performance of oil-field cements9, materials
ith highly complex behaviour.10 It is generally accepted

hat ANNs provide more accurate predictive capabilities than
ethods based on traditional linear or non-linear statistical

mailto:p.v.coveney@ucl.ac.uk
dx.doi.org/10.1016/j.jeurceramsoc.2007.02.212
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egression11 and the superiority of ANNs over regression tech-
iques increases as the dimensionality and/or non-linearity of
he problem increases.12 ANNs have been found to outper-
orm regression techniques in the prediction of ceramic material
roperties.13–16 Additionally, the prediction of dielectric proper-
ies of organic materials has been attempted17 and, again, ANNs
ave been found to be superior.

In previously published work, compositional information has
ormed the core of the ANN input data although other descrip-
ors can be added to the model to help improve performance.18,19

hilst accurate prediction of ceramic material properties has
een performed previously, this is often based on one material,
o which dopants are applied. Here we have attempted property
rediction of a much wider range of materials than has been pre-
iously addressed. Materials in our datasets range from single
ompounds, through to complex binary, ternary and quaternary
ystems. The large range of materials studied requires statisti-
al techniques capable of handling high-dimensional problems;
NNs are ideally suited for this purpose. With an automated

ombinatorial robotic instrument such as the London Univer-
ity Search Instrument (LUSI)20 we can use ANNs to rapidly
can compositional parameter space, searching for desirable
aterials.

. Electroceramic materials

The study of ceramic materials is a wide ranging and complex
ubject due to both the large range of materials available and the
aried properties exhibited.21 In our own work, we are interested
n dielectric ceramics for use in communications equipment and
xygen diffusion properties of ceramics for fuel cell compo-
ents. The continuing growth of mobile telecommunications
as sustained the interest in novel ceramics for use as dielectric
esonators (DRs) at microwave frequencies (1–20 GHz). New
aterials are constantly required for use in resonators and fil-

ers. Additionally, ion-diffusing ceramics are employed in a wide
ange of applications. In particular, electrochemical devices such
s oxygen separation membranes, solid oxide fuel cell (SOFC)
athodes, and syngas reactors make use of the ion-diffusion
roperties of ceramic materials.

One of the most promising classes of materials suitable for
se in such applications are the perovskite oxides with the gen-
ral formula ABO3. A and B are rare earth/alkaline earth ions
nd transition metal cations, respectively. By doping both the A-
nd B-sites with similar metallic elements, the composition of
hese materials can be broadened to encompass a very large num-
er of possible combinations. Dopant species and compositions
an have a major effect on the properties of the material.

Due to the difficult and time consuming process of conven-
ional compound synthesis, scientists are increasingly turning
o high-throughput combinatorial techniques to develop suitable

aterials.22,23 Combinatorial projects can generate vast quan-

ities of data which require informatics and database systems20

or data entry, organisation and data mining. Our Functional
xide Discovery (FOXD) project, which is based around LUSI,

ims to utilise artificial neural network data analysis techniques

l
(
p
u
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o complete the “materials discovery cycle”, allowing the pre-
ictions made to direct the search for new materials into as yet
nexplored territory.20,24

.1. Microwave dielectric materials for communications
quipment

The ideal properties of a dielectric resonator (DR) are a suffi-
iently high relative permittivity to allow miniaturisation of the
omponent (εr > 10) and high ‘Q’ factor at microwave frequen-
ies to improve selectivity (Q > 5000). The quality factor, Q
s given by the inverse of the dissipation factor Q = 1/ tan δ

here δ is the loss angle, the phase shift between the volt-
ge and current when an AC field is applied to a dielectric
aterial.25

Many useful dielectric resonator materials are perovskites
e.g., (Ba, Sr)TiO3, (Ba, Mg)TaO3, 0.7CaTiO3–0.3NdAlO3
nd Ba(Zn, Nb)O3). Whilst the barium strontium titanate
ystem (Ba1−xSrxTiO3) has been examined in detail
xperimentally,26–29 it has not been manufactured and tested
ver the complete range from pure BaTiO3 to pure SrTiO3. The
resent paper describes the development of an ANN capable of
redicting the relative permittivity of barium strontium titanate
long with many other perovskite materials.

Guo et al. have previously investigated the use of ANNs for
he prediction of the properties of dielectric ceramics such as
aTiO3,13 etc. Their work concentrated on the effect of the
ddition of other compounds (lanthanum oxide, niobium oxide,
amarium oxide, cobalt oxide and lithium carbonate) to pure
arium titanate. Other work by Schweitzer et al.19 attempted
rediction of dielectric data listed in the CRC Handbook and
he Handbook of Organic Chemistry. This work used molec-
lar information such as topological (bond type, number of
ccurrences of a structural fragment or functional group) and
eometric (moment of inertia, molecular volume, surface area)
escriptors in addition to the compositional information as the
nput variables. Additionally, there has been considerable work
imed at predicting the electrical properties of lead zirconium
itanate (PZT) using ANN techniques.16,30,31 PZT is a piezo-
lectric ceramic material which finds increasing application in
ctuators and transducers.

.2. Ion-diffusion materials for fuel cells

As noted above, ion-conducting ceramics are used in electro-
hemical devices such as oxygen separation membranes, solid
xide fuel cell (SOFC) cathodes and syngas reactors. Solid oxide
uel cells are of great interest as economical, clean and efficient
ower generation devices.32 Fuel cells have several advantages
ver conventional power generation techniques including their
igh-energy conversion efficiency and high power density while
ngendering extremely low pollution, in addition to the flexibil-
ty they confer in the use of hydrocarbon fuel.33 Traditionally,

arge scale SOFCs have been based on yttria stabilised zirconia
YSZ) electrolytes and operate at high temperature (1000 ◦C),
lacing considerable restrictions on the materials that can be
sed. Reduction of the operating temperature is essential for the
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uture successful development of SOFCs, allowing increased
eliability and the use of a wider range of materials.

SOFC cathodes have stringent requirements. Ideally, the
athode material should be stable in an oxidising environ-
ent, have a high electrical conductivity, be thermally and

hemically compatible with the other components of the cell
nd have sufficient porosity to allow gas transport to the
xidation site. Critically, the cathode material must allow
iffusion of oxygen ions through the crystal lattice. The flex-
ble perovskite structure of these materials allows doping,
ntroducing defects into the lattice and facilitating the diffu-
ion of ion species through the material. Materials currently
nder investigation include La1−xSrxMnyCo1−yO3 (LSMC),
4 La1−xCaxFeO3−δ (LCF), 35 La2−xSrxNiO4+δ (LSN)36 and
axSr1−xCo1−yFeyO3−δ (BSCF).37 Much of the interest in these
aterials has stemmed from the fact that they form with oxygen

eficiencies which provide a mechanism for fast oxygen ion
ransport through the defects in the crystal structure. Despite
heir ion transport properties, many possible SOFC cathode

aterials suffer from thermomechanical deficiencies such as
racking. Doping of Sr with other alkaline earth metals and
eplacing Mn, Co and Fe with other transition metals permits

wide range of possible materials allowing development of
material with optimal ion transport and thermomechanical

roperties.36

There has been considerable investigation into the prediction
f overall fuel cell performance using ANN techniques,38–41 and
ome work on the modelling of diffusion properties has also been
arried out.4 However, there has been little work on the ANN
rediction of oxygen diffusion properties of the ceramic mate-
ials used as individual components of fuel cells although Ali et
l.5 have recently investigated the structure–performance rela-
ionship of SOFC electrodes. Here, we present the results of our
ork on the development of ANNs for the prediction of the oxy-
en diffusion properties of ceramic materials. These networks
ay be subsequently included in the larger FOXD project,24

llowing development of optimal SOFC cathode materials.

. Artificial neural networks

Artificial neural networks can be used to develop functional
pproximations to data with almost limitless application.12,42

NNs use existing data to learn the functional relationships
etween inputs and outputs. Unlike standard statistical regres-
ion techniques, ANNs make no prior assumption of the
nput–output relationship, a powerful advantage in their appli-
ation to complex systems.

ANNs are formed from individual processing units, or neu-
ons, connected together in a network. The individual units are
rranged into layers and the power of the neural computation
omes from the interconnection between the layers of processing
nits. An individual unit consists of weighted inputs, a com-
ination function, an activation function and one output. The

utputs of one layer are connected to the inputs of the next layer
o form the network topology. The performance of the network
s determined by the form of the activation function, the train-
ng algorithm and by the network architecture. The selection
eramic Society 27 (2007) 4425–4435 4427

f input data and architecture is a non-trivial process43,44 and
an have a large effect on the ultimate predictive abilities of the
etwork. The individual units operate by evaluating the combi-
ation function, which transforms the input and weight vectors
nto a scalar value. The output of the combination function is
ransformed through the activation function to give the neuron’s
state of activation”. The use of a non-linear activation function
s responsible for the ability of the network to learn non-linear
unctions as a whole.

For an ANN to be able to make predictions, it must be
rained. The training process involves the application of a train-
ng dataset to the network. The training algorithm is used to
teratively adjust the network’s interconnection weights so that
he error in prediction of the training dataset records is min-
mised and the network reaches a specified level of accuracy.
he network can then be used to predict output values for new

nput data and is said to generalise well if such predictions are
ound to be accurate.

.1. Multi-layer perceptron networks

In a multi-layer perceptron (MLP) network, the individ-
al processing units are known as perceptrons and they are
sually arranged into three-layers: input, hidden and output.
echt–Nielsen proved that any continuous function can be

pproximated over a range of inputs by using a three-layer feed
orward neural network with back-propagation of errors.45

The number of neurons in the input and output layers is deter-
ined by the number of independent and dependent variables,

espectively. The number of hidden neurons is determined by
he complexity of the problem and is often obtained by trial
nd error although evolutionary computing techniques such as
enetic algorithms46 have been used to determine optimal net-
ork architecture.
We now describe a feed-forward neural network with back-

ropagation of errors. The operation of the network is as follows:

1) Input some data xi to the input layer.
2) Evaluate the combination function:

cj =
N∑
i

wijxi + θ,

which in this case is the dot product of the input vector xi

and the weights wij , where j is the number of the hidden
node being calculated, θ the bias and N is the length of the
input vector.

3) Calculate the value of the hidden node by applying a tanh-
sigmoid activation function:

H = 2 − 1,
j
(1 + exp(−2cj))

where j is the number of the hidden node and y is the output
of the combination function defined earlier.
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4) Calculate the network’s output values Ok at neuron k:

Ok = g′
(

P∑
l

w′
lkHl + θ′

)
,

where k is the number of the output node being calculated,
θ′ the bias, w′

lk the connection weight and P is the length of
the hidden node vector (the number of hidden nodes); g′ is
a linear activation function.

5) Use the difference between Ok and the data contained in
the training set along with the derivative of the activation
function to calculate the correction factor (δk) to the weights
connecting the hidden and output layer neurons.

6) Use the correction factor to calculate the actual corrections
to the weights connecting the hidden and output layer neu-
rons:

wnew
jk = wold

jk + ηδkHj,

where η is the learning rate and controls the adjustments to
the weights/biases.

7) Calculate the correction factors for the weights connecting
the input and hidden neurons, and insert these corrections.

8) Return to the first step and repeat the algorithm with the next
entry in the training dataset.

he application of this algorithm to the complete training dataset
s known as an epoch. The network’s performance is measured
fter each epoch has been completed and is determined by an
rror function. Two common error functions have been used,
oth based on the difference between the network’s prediction
nd the expected values for the entire dataset. The first error
unction is the root mean square (RMS) of the prediction error:

RMS =

√√√√√√
N∑

i=1

(yi − ti)2

N
, (1)

here y is the output predicted by the network, t the experi-
entally measured output and N is the number of records in the

ataset. The second error function is known as the root relative
quared (RRS) error and is given by:

RRS =

√√√√√√√√√√

N∑
i=1

(yi − ti)2

N∑
i=1

(ti − t̄)

, (2)

here t̄ is the mean of the experimentally measured outputs and
he other symbols have been defined previously.
The training process corresponds to an iterative decrease in
he error function and continues until a predetermined value is
eached, when training is halted. The trained network is tested
hrough the application of previously unseen data to determine

r
t
o
o

eramic Society 27 (2007) 4425–4435

he performance. A network, which performs well when work-
ng on new data is said to have good generalisation properties.
s with statistical regression models, ANNs tend to perform
uch better when interpolating than extrapolating predictions.
hat is, whilst predictions are possible for any values of the

nput space, the most accurate and reliable results will be found
hen attempting predictions of materials which are similar to
aterials found in the training dataset.
The selection of the error function value at which the training

rocess is halted is not as simple as might first appear. The obvi-
us choice is to select a low value, to obtain as high accuracy as
ossible. Unfortunately, this is found to lead to over-training: the
raining dataset is “memorised” by the network and the generali-
ation to new data is poor. The effects of over-training occurring
an be reduced by the use of another dataset, known as a val-
dation dataset, which is used to monitor the training process.
fter each epoch of training, the network is used to predict the
utput values of the validation dataset and the error function
(1) or (2)) of the validation dataset is calculated. When training
tarts, the error function of the validation dataset decreases in
ine with the error function of the training dataset. However, as
he network begins to become over-trained, the error function
f the validation dataset increases, and training is halted. It is
t the point where the error function of the validation dataset
eaches a minimum that the network is expected to have the best
eneralisation performance. The use of the validation dataset to
elp prevent over-training is known as early stopping8 of the
raining process.

.2. Radial basis function networks

Radial basis function (RBF) neural networks47 operate in a
imilar fashion to MLP networks. The key difference is that the
ombination function is the euclidean distance between the input
ector and the weight vector instead of the dot-product used in
LP networks. The most common form of basis function used

s the Gaussian:

j = exp

(
− x2

2σ2
j

)
, (3)

here x is the euclidean distance between the input vector and
he centre of the Gaussian basis function and σj is a parameter
hich determines the “width” of the jth function.
RBF training algorithms operate in two stages. The first is

nsupervised and uses only the input data of the training set.
his stage involves the use of algorithms such as K-means
lustering48 to determine suitable locations and width param-
ters for the basis functions. The second stage is identical to that
sed in MLP networks. Once the training algorithm has been
sed to locate the basis functions throughout parameter space
nd to calculate the second layer weights, the RBF network can
etical advantage of RBF over MLP networks is that the RBF
raining algorithm is the solution of a linear problem and can
ften be performed much faster than the complete non-linear
ptimisation required in the training of an MLP network.
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.3. Generalisation in artificial neural networks

The goal of ANN methods is to develop a network which is
apable of accurately predicting output data values for records
hich are previously unseen by the network. An estimate of the
eneralisation performance of a network can be obtained by cal-
ulating the error function, Eqs. (1) or (2), of a dataset which is
ndependent of that used for training. Such a dataset is known as
he test dataset. In order to utilise all of the data available, and to
nsure that network performance is not simply due to coinciden-
al dataset selection, cross-validation analysis is performed.49 In
ross-validation, the data is divided into a number of subsets.
ll bar one of the datasets are employed for training/validation

nd the dataset withheld is used for testing. This process is
epeated, each time withholding a different dataset and using
he remainder for training/validation. In this way, all of the data
s used for testing and the likelihood that the network perfor-

ance is due to chance dataset selection is significantly reduced.
nce complete, the mean of the error function from each rep-

tition is calculated. This value is known as the generalisation
rror and provides a measure of the overall performance of the
etwork. To further increase confidence in the generalisation
rror, repeated cross-validation can be performed. In repeated
ross-validation, cross-validation is performed several times,
andomising the data in between each cross-validation. In this
ay, n × m-fold cross-validation is performed, the network is

rained n × m times and we can be even more confident that the
uoted generalisation error is accurate.

. Ceramic materials datasets

Our dielectric dataset contains 700 records on the compo-
ition of dielectric resonator materials and their properties.50

any ceramic properties such as porosity, grain size, raw mate-
ials, processing parameters, measurement techniques and even
he equipment used to manufacture them can all affect the dielec-
ric properties. Since all material properties can be affected by
uch parameters the inclusion of such information may increase
ur ability to predict ceramic material properties.

The majority of materials found in the dataset are Group II
itanates, and Group II and transition metal oxides. Also included
re some oxides of the lanthanides and actinides. The dataset
ontains relative permittivity values and Q-factors for 99% of
he records. Resonant frequency and temperature coefficient of
esonant frequency data are also listed, but are only available for
8% and 83% of the records, respectively. The 700 records in
he training dataset contain 53 different elements of which these

aterials may be comprised (Ag, Al, B, Ba, Bi, Ca, Cd, Ce, Co,
r, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, La, Li, M, Mg,
n, Mo, Na, Nb, Nd, Ni, O, P, Pb, Pr, Sb, Sc, Si, Sm, Sn, Sr,

, Ta, Tb, Te, Ti, Tm, V, W, Y, Yb, Zn, Zr). It is the proportion
f each of these elements found in the ceramic material which
orms the input to the network.
In addition to the full dataset described above, an “optimised”
ielectric dataset was obtained. This consisted of a subset of the
ata, selected by removing all glass material and all materials
ontaining unusual dopants. The optimised dataset consists of 90

s
w
T
o

eramic Society 27 (2007) 4425–4435 4429

ecords containing 37 different elements (Al, Ba, Bi, Ca, Ce, Co,
u, Eu, F, Fe, Ga, Gd, Ge, Hf, La, Li, M, Mg, Mn, Na, Nb, Nd,
i, O, Pb, Pr, Si, Sm, Sn, Sr, T, Ta, Ti, V, W, Zn, Zr). Again, the

ompositional information forms the input to the neural network
nd the dielectric properties the output.

Our ion-diffusion dataset contains 1100 records of oxygen
iffusing materials and their properties. The input data used for
ining of the ion-diffusion data mainly consists of the compo-

itional information of each material as in the dielectric dataset.
he materials consist of Group II, transition metal, lanthanide
nd actinide oxides and contain 32 different elements (Al, Ba, Bi,
a, Cd, Ce, Co, Cr, Cu, Dy, Fe, Ga, Gd, Ho, In, La, Mg, Mn, Nb,
d, Ni, O, Pr, Sc, Si, Sm, Sr, Ti, V, Y, Yb, Zr). The proportion of

hese elements, along with the temperature at which the diffusion
oefficient was measured from the network inputs. This dataset
as collected from published sources. Unlike the records con-

ained in the dielectric dataset, the ion-diffusion data contains
any records, which are measurements of the same material

omposition, performed at different temperatures. To differenti-
te between such measurements, the measurement temperature
s included as an input variable of the ANN.

. Neural network operation

Pre-processing of training data improves training stability
nd helps to prevent computational over- or underflow. All of the
ata is scaled so that the mean value is 0 and the standard devia-
ion is 1. In addition to the scaling algorithms, a technique called
rincipal component analysis (PCA) is performed to remove any
inear dependence of the input variables.51

For the dielectric data, principal component analysis (PCA)
as used to reduce the dimensionality of the dataset from the
riginal 53 elements to 16 by removing 2% of the variation of the
ata. Similarly, for the optimised dielectric dataset, PCA reduced
he dimensionality from 37 to 21. PCA of the ion-diffusion data
llowed the dataset to be reduced from 33 elements to 16 by
emoving 2% of the variation of the data. The datasets used are
andomly selected from the available data. The full set of data
as split into three datasets: training, validation and test. As
art of the cross-validation analysis, the data was divided into
0 equal size sub-datasets. One of the datasets is used for testing
nd the remainder is used for training and validation.

The network contains three layers: input, hidden and out-
ut. The number of inputs and outputs were determined by the
imensions of the input data and the number of properties that
e were aiming to predict. The number of hidden nodes was
etermined by trial and error and was chosen to be 15 for all
hree networks (dielectric, optimised dielectric and diffusion).

hen training was attempted with 10 hidden nodes, the network
as not flexible enough to allow the network to learn the rela-

ionships, and generalisation was poor. The use of 20 hidden
odes gave a negligible performance increase. The computa-
ional requirements of the training process are low; on a 1.6 GHz

ingle processor machine, the training of a 700 record dataset
as completed in 3600 epochs and took approximately 1 min.
he ANNs were developed in Matlab,52 making extensive use
f the Neural Network Toolbox.53
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Also shown is a repeated cross-validation analysis of the
dielectric dataset with ionic radii data included (Table 2). The
ionic radius data was included by calculating the sum of the
430 D.J. Scott et al. / Journal of the Europ

Initial attempts to train the neural network using the dielec-
ric dataset resulted in poor generalisation. The dataset contains
ecords with relative permittivities in the 0–1000 range. Espe-
ially poor results were obtained when attempting prediction
f materials with permittivity greater than 100. Investigation
evealed that the number of records with permittivity greater
han 100 is far fewer than that in the range 0–100: 91% of the
ecords are in the 0–100 range and the remaining 9% in the
ange 100–1000. This resulted in the network being unable to
ccurately learn which material compositions produce relative
ermittivities greater than 100.

Records associated with materials, which exhibit relative per-
ittivity greater than 100 were removed from the dataset. When

etwork training was restarted, the performance of the network
mproved considerably, allowing accurate generalised predic-
ions of the relative permittivity. However, as mentioned before,
tatistical techniques are more reliable when interpolating and
o, whilst the predictive ability in the 0–100 range increased,
xtrapolation, predicting relative permittivity greater than 100,
s likely to be relatively inaccurate.

The diffusion coefficients of the data in the ion-diffusion
ataset vary over a wide range (∼ 4 orders of magnitude) and
ur initial training attempts resulted in extremely poor accuracy.
he data was preprocessed by taking logarithms of the diffusion
oefficients which reduced the absolute range of the output data
nd resulted in much improved ANN performance.

. Results

The trained neural networks have been used to predict the
roperties of the materials in the test datasets which have then
een compared to the experimental results. In addition, we have
arried out cross-validation analysis of the data. The tables show
ata from 10 repetitions of 10-fold cross-validation analysis. To
easure the overall network performance, we have calculated

oth RMS and RRS error functions of the test datasets of the 10-
old cross-validation analysis and then calculated the mean of
hese error functions. The dataset was then re-randomised, and
he 10-fold cross validation performed again. Once 10 randomi-
ations were performed, the mean of the error functions of each
ross validation was determined. The tables in this section show
he results from each cross-validation and the overall mean and
tandard deviation of these results. The cross-validation ensures
hat the results are generalised throughout the entire dataset and
he multiple randomisations ensure that the results are not due to
oincidental randomisation. The overall “mean of mean” values
f the error functions give a good indication of the generalisa-
ion error and provide the expected accuracy of predictions made
sing the neural networks.

Finally, some analysis of the materials in each of the cross-
alidation datasets has been performed. We have attempted to
rovide a measure of the difference of the test dataset from
he training/validation datasets. To calculate this figure, the
ean composition of the test dataset and the combined train-
ng/validation datasets were calculated. We then calculated the
MS of the difference between the two mean values to show how

he materials in the test dataset compare to the materials in the
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ombined training/validation dataset. Test datasets which have
low mean composition difference from the training/validation
atasets are more similar to the training/validation data and thus
ikely to perform better than test datasets with a large mean
omposition difference.

.1. Prediction performance of the network trained using
he dielectric dataset

The full dielectric dataset was divided into three sub-datasets
training, validation and test) and training was performed until
alted by early stopping. The trained network was used to pre-
ict the (dimensionless) relative permittivity of the test dataset;
he correlation between the experimentally observed permittiv-
ty and the predicted permittivity is shown in Fig. 1, which
emonstrates the accuracy of the predictions. The RMS error
f the predicted data compared with the experimental data is
.61. Fig. 1 is a plot of the second dataset combination from the
ross-validation analysis.

Statistical analysis of neural networks developed from the
ielectric dataset was obtained by performing 10 repetitions of
0-fold cross-validation analysis. Results of this analysis are
rovided in Table 1, which shows the RMS and RRS error val-
es, the parameters of a straight line fitted using least squares
egression and the RMS of the mean compositional difference
etween the test dataset and the training/validation dataset. Also
ncluded are the the mean and standard deviation of these values.
he values obtained are very similar as indicated by the stan-
ard deviation which confirms that each of the datasets contains
good representation of the whole dataset. This demonstrates

hat each sub-dataset is well randomised and the neural net-
ork performance is not simply due to the selection of the
ig. 1. The performance of the back-propagation MLP neural network used to
redict the permittivity of the test dataset from the full dielectric dataset. This
lot illustrates the performance of the second dataset combination in the cross-
alidation analysis (see Table 1). An ideal straight line with intercept 0 and slope
is also shown. The RRS error of the predictions is 0.61.
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Table 1
The performance of the back-propagation MLP neural network used to predict the data within the test datasets taken from the dielectric dataset

Quantity Dataset randomisation Mean S.D.

1 2 3 4 5 6 7 8 9 10

Intercept 1.05 1.62 0.27 −0.25 2.33 0.75 0.22 1.44 −0.88 −0.02 0.65 0.97
Gradient 0.98 0.96 0.98 1.01 0.96 0.97 1.00 0.97 1.03 0.99 0.99 0.02
Correlation 0.63 0.63 0.68 0.65 0.64 0.62 0.64 0.65 0.65 0.63 0.64 0.02
RMS error 13.48 13.42 12.54 13.2 13.34 13.74 13.24 12.83 13.06 13.26 13.21 0.34
RMS mean material difference 0.13 0.14 0.14 0.13 0.13 0.14 0.15 0.13 0.14 0.13 0.14 0.01
RRS error 0.62 0.62 0.57 0.6 0.61 0.62 0.60 0.58 0.59 0.60 0.60 0.02

Repeated cross-validation analysis was used to obtain these results and the mean and standard deviation are also given.

Table 2
The performance of the back-propagation MLP neural network used to predict the data within the test datasets taken from the dielectric dataset, including ionic radii
as input variables

Quantity Dataset randomisation Mean S.D.

1 2 3 4 5 6 7 8 9 10

Intercept 0.73 0.39 0.96 0.75 1.57 1.36 −0.65 −0.02 2.21 −1.29 0.6 1.05
Gradient 0.99 0.98 0.99 0.97 0.95 0.96 1.01 1.00 0.96 1.01 0.98 0.02
Correlation 0.65 0.67 0.65 0.63 0.62 0.62 0.67 0.64 0.67 0.68 0.65 0.02
RMS error 12.91 12.58 13.07 13.54 13.47 13.57 12.77 13.35 12.71 12.48 13.04 0.41
RMS mean material difference 0.15 0.14 0.15 0.14 0.16 0.13 0.13 0.16 0.14 0.14 0.14 0.01
RRS error 0.59 0.58 0.6 0.62 0.63 0.61 0.58 0.60 0.58 0.57 0.6 0.02
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cess and is therefore itself subject to the error in the experimental
data. An ANN will never be able to provide predictions of prop-
erties which are more accurate than the error in the experimental
measurements. Unfortunately, we do not have any error infor-
epeated cross-validation analysis was used to obtain these results and the mean
hows that inclusion of ionic radius has no effect on the quality of predictions.

onic radii of the elements in the corresponding material, in pro-
ortion to their fractional composition. The inclusion of ionic
adius data leads to no change in the prediction performance of
he network trained using the full dielectric dataset. The RRS
rror of the predictions remains at 0.6.

.2. Prediction performance of the network trained using
he optimised dielectric dataset

The optimised dielectric dataset was examined in a similar
ashion to the full dielectric dataset. The dataset was divided
nto three, and training carried out using the early stopping
echnique to prevent over-training. Relative permittivity predic-
ions of the test dataset were again obtained and the networks
erformance is summarised in Fig. 2. This figure shows the
ccuracy of the neural network predictions compared to those
btained by experiment. The straight line shows the ideal corre-
ation.

As before, network training was performed using cross-
alidation analysis. The results of this are summarised in Table 3.
gain, since the statistical data are similar for each of the trained
etworks, the datasets each contain a good representation of the
hole dataset and the result obtained in Fig. 2 is not simply due

o the random selection of the datasets.
Also shown is a repeated cross-validation analysis of the opti-

ised dielectric dataset with ionic radius data included (Table 4).

s before, the ionic radius data was included by calculating the

um of the ionic radii of the elements in the material, in pro-
ortion to their fractional composition within the material. The
nclusion of ionic radii data results in an increase in prediction
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standard deviation are also given. Comparison with the data reported in Table 1

erformance as indicated by the RRS error decrease from 0.71
o 0.65.

Whilst the ANN’s predictions agree well with the experi-
ental values in the dataset, it should be remembered that the

etwork uses the experimental results as part of the training pro-
ig. 2. The performance of the back-propagation MLP neural network used to
redict the permittivity of the test dataset from the optimised dielectric dataset.
his plot illustrates the performance of the first dataset in the cross-validation
nalysis (see Table 3). An ideal straight line is shown as in the previous figure.
he RRS error between experimental and predicted data is 0.63 (dimensionless).
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Table 3
The performance of the back-propagation MLP neural network used to predict the data within the test datasets taken from the optimised dielectric data

Quantity Dataset randomisation Mean S.D.

1 2 3 4 5 6 7 8 9 10

Intercept 2.24 7.03 0.94 3 −3.18 −4.24 −0.41 1.16 −10.35 2.27 −0.15 4.78
Gradient 0.94 0.85 0.96 0.91 1.05 1.14 0.97 0.88 1.26 1.02 1 0.13
Correlation 0.64 0.44 0.62 0.6 0.61 0.67 0.6 0.51 0.63 0.6 0.59 0.07
RMS error 13.87 19.23 15.37 14.19 13.71 14.47 15.37 17.33 15.51 15.32 15.44 1.7
RMS mean material difference 0.4 0.38 0.38 0.38 0.42 0.4 0.38 0.4 0.4 0.39 0.39 0.01
RRS error 0.63 0.89 0.71 0.69 0.63 0.62 0.71 0.76 0.69 0.72 0.71 0.08

Repeated cross-validation analysis was used to obtain these results and the mean and standard deviation are also given.

Table 4
The performance of the back-propagation MLP neural network used to predict the data within the test datasets taken from the optimised dielectric dataset, including
ionic radii as input variables

Quantity Dataset randomisation Mean S.D.

1 2 3 4 5 6 7 8 9 10

Intercept 2.01 11.17 1.67 −6.28 0.14 5.26 −13.31 −9.05 −2.14 −3.17 −1.37 7.1
Gradient 0.96 0.75 0.89 1.09 0.99 0.91 1.31 1.2 1.02 1.07 1.02 0.16
Correlation 0.64 0.56 0.57 0.69 0.71 0.57 0.57 0.64 0.73 0.73 0.64 0.07
RMS error 14.04 15.31 17.46 14.81 12.41 16.07 15.73 14.82 14.63 13.02 14.83 1.46
RMS mean material difference 0.39 0.41 0.38 0.38 0.36 0.40 0.36 0.38 0.39 0.40 0.38 0.02
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ing process and is subject to the error in the data. An ANN
will never be able to provide predictions of properties which are
more accurate than the error in the experimental measurements.
Unfortunately, the ion-diffusion dataset only contains errors for
RS error 0.61 0.70 0.74 0.63

epeated cross-validation analysis was used to obtain these results and the mea

ation for the dielectric data. Since the neural network uses
xperimental data in the training algorithm, the experimental
rror represents the intrinsic accuracy of the network. Overall,
he network performs better when using the complete rather than
he optimised dataset. When only compositional information is
ncluded, the RRS error of the cross-validated system is reduced
rom 0.71 to 0.60 when the entire dataset is used. The standard
eviation of the RRS error function obtained from the optimised
ataset is larger than for the full dataset, possibly indicating that
here is insufficient data for training the network when using the
ptimised dataset.

As stated earlier, we expect the trained networks to perform
ell in interpolation, but less reliably in extrapolation. We can

ttempt to gauge the probability that the prediction of the prop-
rties of a material are accurate by measuring the “distance” of
material’s composition from the hypothetical mean material.

f a material is within, say, one standard deviation of the mean,
he network is operating close to known parameter space and the
redictions obtained are more likely to be accurate than mate-
ials which are “further away” in parameter (here composition)
pace.

.3. Prediction performance of the network trained using
he ion-diffusion dataset

Analysis of the ion-diffusion dataset was performed using
he same method as for the dielectric dataset. The dataset was

andomised, divided into the three sub-datasets and training car-
ied out until halted by the early stopping technique. The trained
etwork was used to predict the logarithm of the diffusion coeffi-
ient (cm2 s−1) of the records in the test dataset. The comparison
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3 0.75 0.68 0.62 0.65 0.55 0.65 0.07

standard deviation are also given.

etween the predicted and experimental values is shown in Fig. 3
nd the RRS error of the predicted data compared to the exper-
mental data is 2.12 (dimensionless since we are working with
he logarithm of the diffusion coefficient).

As for the dielectric dataset, it should be remembered that
he network uses the experimental results as part of the train-
ig. 3. The performance of the back-propagation MLP neural network used
o predict the diffusion coefficient (cm2 s−1) of the test dataset from the ion-
iffusion dataset. The RMS error between experimental and predicted data is
.34 (dimensionless, since the network is trained using the logarithm of the
iffusion data).
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Table 5
The performance of the back-propagation ANN on the ion-diffusion dataset

Quantity Dataset randomisation Mean S.D.

1 2 3 4 5 6 7 8 9 10

Intercept −0.07 −0.04 −0.12 0.23 −0.29 0.05 −0.05 0.37 0.14 0.21 0.04 0.2
Gradient 1 1 1 1.01 0.99 1.01 1 1.01 1.01 1.01 1 0.01
Correlation 0.88 0.88 0.88 0.87 0.86 0.88 0.88 0.89 0.87 0.87 0.88 0.01
RMS error 2.12 2.07 2.1 2.13 2.26 2.08 2.1 2.04 2.14 2.15 2.12 0.06
RMS mean material difference 0.11 0.11 0.11 0.1 0.11 0.11 0.11 0.12 0.12 0.11 0.11 0.01
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RS error 0.35 0.34 0.34 0.35

epeated cross-validation analysis was used to obtain these results and the mea

bout 3% of the records. Due to the lack of error information,
e are unable to perform comparisons between the ANN and

xperimental data and thus to determine whether or not the ANN
redicts values within experimental error. As before, repeated
ross-validation analysis was performed. The results of this are
ummarised in Table 5. The low standard deviation of the mean
alues shows that each of the datasets contains a good represen-
ation of the whole dataset and the result obtained in Fig. 3 is not
imply a coincidence of the randomisation and selection of the
atasets. Again, interpolated predictions are more likely to be
ccurate than extrapolated results and we can use compositional
istances from the mean composition to attempt to predict the
xpected accuracy of our predictions.

.4. Radial basis function networks

In contrast to MLP networks detailed in the previous section,
ttempted training of radial basis function networks resulted in
etworks which generalised poorly. After making attempts to
rain networks using spherical RBFs, using the K-means clus-
ering algorithm, we proceeded to modify the code to allow
llipsoidal basis functions which unfortunately resulted in no
mprovement. A possible reason for the failure of RBF networks
o predict the materials properties in this study is that RBF net-
orks perform poorly when there are input variables which have

ignificant variance, but which are uncorrelated with the output
ariable.8 MLP networks learn to ignore the irrelevant inputs
hilst RBF networks require a large number of hidden units to

chieve accurate predictions.

. Conclusions

Through application of artificial neural networks to
re-existing datasets culled from the literature, we have demon-
trated that we can predict the permittivities and diffusion
oefficients of ceramic materials simply from their composi-
ion and, in the case of the diffusion coefficient, experimental

easurement temperature. A three-layer perceptron network
as trained using the back-propagation algorithm and cross-
alidation analysis of the data gave a mean root relative squared

rror of 0.6 for prediction of the dielectric constant of materials in
he full dielectric dataset compared to 0.71 for the smaller, opti-

ised dataset. These results agree with previous work in the field
f oilfield cements,9 where neural network predictions were sub-
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standard deviation are also given.

tantially enhanced when additional data records were included.
he inclusion of ionic radius data results in no change to the pre-
iction accuracy for the full dataset, although, a decrease in root
elative squared error of 0.06 was found when the ionic radius
ata was included in the optimised dielectric dataset. The same
etwork trained using the ion diffusion dataset was able to pre-
ict the logarithm of the oxygen diffusion coefficient with a RRS
rror of 0.35.

Reliable Baconian methods for the prediction of the proper-
ies of ceramic materials are likely to become powerful tools for
he scientific community whose accuracy will increase as more
ata is generated. The data produced by the FOXD project20,24 is
eginning to accumulate and will be used to further develop these
rtificial neural networks. Through the use of evolutionary opti-
isation techniques such as the genetic algorithms of Holland,54

e hope to be able to invert the neural networks described in this
aper.9 This inversion provides the ability to search for materials
ith desirable properties which can then be synthesised using

he London University Search Instrument. Other data mining
ools including rule induction algorithms such as C4.555 can also
e used to provide explicit, meaningful performance prediction
ules from neural networks.56

As part of the larger FOXD project, artificial neural net-
orks akin to those developed here will form a vital link in

he materials discovery cycle, leading to the possibility of steer-
ng automated searches in the compositional search space. In
ddition to producing data for further artificial neural network
tudies, ultimately we hope to use these techniques to discover
nd investigate new materials suitable for use in telecommuni-
ations, fuel cell and other areas.
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